当前位置: 首页 > news >正文

宁夏商擎网站建设合肥百度推广公司哪家好

宁夏商擎网站建设,合肥百度推广公司哪家好,内江企业网站建设公司,河北共产党员网站两学一做41.前 K 个高频元素 (力扣347题) 给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素。你可以按 任意顺序 返回答案。 示例 1: 输入: nums [1,1,1,2,2,3], k 2 输出: [1,2]示例 2: 输入: nums [1], k 1 输出: …

41.前 K 个高频元素

(力扣347题)

给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素。你可以按 任意顺序 返回答案。

示例 1:

输入: nums = [1,1,1,2,2,3], k = 2
输出: [1,2]

示例 2:

输入: nums = [1], k = 1
输出: [1]

提示:

  • 1 <= nums.length <= 105
  • k 的取值范围是 [1, 数组中不相同的元素的个数]
  • 题目数据保证答案唯一,换句话说,数组中前 k 个高频元素的集合是唯一的

**进阶:**你所设计算法的时间复杂度 必须 优于 O(n log n) ,其中 n 是数组大小。

解题思路

  1. 题目要求我们从一个整数数组 nums 中找出出现频率最高的 k 个元素。为了实现这一目标,我们可以采用以下步骤:
    1. 统计频率: 使用一个哈希表(unordered_map)来统计每个数字的出现次数。遍历数组 nums,对于每个数字,将其在哈希表中的计数加一。这样,我们可以快速得到每个数字的出现频率。
    2. 维护小顶堆: 使用一个优先队列(priority_queue)来维护频率最高的 k 个元素。优先队列的第一个元素是根节点,即堆顶元素。默认情况下,std::priority_queue 是一个大顶堆,但通过自定义比较函数 mycomparison,我们可以将其转换为小顶堆。小顶堆的特性是堆顶元素是所有元素中最小的,这正好符合我们的需求,因为我们希望在堆中保留频率最高的 k 个元素。当堆的大小超过 k 时,弹出堆顶元素(频率最小的元素),从而保证堆中始终存储的是频率最高的 k 个元素。
    3. 提取结果: 将小顶堆中的元素依次弹出,并存入结果数组。由于小顶堆的特性,弹出的顺序是频率从小到大,因此需要从后向前填充结果数组。最终,结果数组中存储的就是频率最高的 k 个元素。

单调队列与优先队列的区别

首先,我们需要明确 单调队列优先队列 是两种不同的数据结构,它们的行为和用途有所不同。

单调队列

  • 单调队列通常用于处理滑动窗口问题,它维护一个单调递增或单调递减的队列。
  • 单调队列的第一个元素通常是当前窗口的最小值或最大值。
  • 单调队列的实现通常基于双端队列(std::deque),而不是基于堆。

优先队列

  • 优先队列是一种基于堆的数据结构,通常用于维护一个动态集合,使得每次可以高效地访问和删除具有最高优先级的元素。
  • 优先队列的根节点(堆顶元素)是所有元素中优先级最高的元素。
  • 默认情况下,std::priority_queue 是一个大顶堆,即堆顶元素是所有元素中最大的。

大顶堆的定义

在大顶堆中:

  • 根节点(堆顶元素)是所有元素中最大的。
  • 对于任意节点 i,其子节点的值都小于或等于节点 i 的值。

代码

// 给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素。
// 你可以按 任意顺序 返回答案。
#include <iostream>
#include <vector>
#include <unordered_map>
#include <queue>
using namespace std;// 使用单调队列(基于小根堆(底层逻辑是完全二叉树)
class Solution
{
public:// 小顶堆(自定义比较函数)class mycomparison{// 重载比较运算符 std::less<T> 把默认的大顶堆变成小顶堆public://  pair<int, int>是类模板bool operator()(const pair<int, int> & lhs, const pair<int, int> & rhs){// 比较两个元素的频率,频率大的排在后面(小顶堆)return lhs.second > rhs.second;}};vector<int> topKFrequent(vector<int> &nums, int k){ // 使用哈希表统计每个数字出现的频率unordered_map<int, int> map;// 遍历数组,统计每个数字的出现次数for (int i = 0; i < nums.size(); i++){// 遍历数组,统计每个数字的出现次数map[nums[i]]++;}// 定义一个小顶堆,用于存储频率最高的 k 个元素// std::priority_queue 默认是一个大顶堆priority_queue<pair<int, int>, vector<pair<int, int>>, mycomparison> pri_que; // priority_queue优先队列// 遍历哈希表,将元素及其频率加入小顶堆for (unordered_map<int, int>::iterator it = map.begin(); it != map.end(); it++){// 将当前元素及其频率加入堆pri_que.push(*it);// 如果堆的大小超过 kif(pri_que.size() > k){pri_que.pop();}}// 将小顶堆中的元素依次弹出,存入结果数组vector<int> result(k);//    / 从后向前填充结果数组for(int i = k - 1;  i >= 0; i--){// 获取堆顶元素的数字部分result[i] = pri_que.top().first;// 弹出堆顶元素pri_que.pop();}// 返回结果数组return result;}
};
  • 时间复杂度: O(nlogk)
  • 空间复杂度: O(n)

42.二叉树的前序遍历

(力扣94题)

给你二叉树的根节点 root ,返回它节点值的 前序 遍历。

示例 1:

**输入:**root = [1,null,2,3]

输出:[1,2,3]

解释:

img

示例 2:

**输入:**root = [1,2,3,4,5,null,8,null,null,6,7,9]

输出:[1,2,4,5,6,7,3,8,9]

解释:

img

示例 3:

**输入:**root = []

输出:[]

示例 4:

**输入:**root = [1]

输出:[1]

提示:

  • 树中节点数目在范围 [0, 100]
  • -100 <= Node.val <= 100

**进阶:**递归算法很简单,你可以通过迭代算法完成吗?

解题思路

前序遍历的顺序是“根-左-右”,即先访问根节点,然后递归遍历左子树,最后递归遍历右子树。实现前序遍历可以使用递归或**非递归(栈)**的方法。

递归方法

递归方法是最直观的实现方式,利用函数调用栈来实现遍历:

  1. 访问根节点:将当前节点的值加入结果向量。
  2. 递归左子树:对当前节点的左子树进行前序遍历。
  3. 递归右子树:对当前节点的右子树进行前序遍历。
  4. 终止条件:如果当前节点为空,直接返回。

递归方法的优点是代码简洁,但可能会受到递归深度的限制。

非递归方法(栈)

非递归方法使用显式的栈来模拟递归调用:

  1. 初始化栈:将根节点压入栈。
  2. 循环条件:当栈不为空时,执行以下操作:
    • 弹出栈顶节点,访问其值,并将其值加入结果向量。
    • 如果右子节点不为空,将其压入栈。
    • 如果左子节点不为空,将其压入栈。
  3. 终止条件:栈为空时,遍历完成。

非递归方法的优点是避免了递归调用的开销,适合处理较深的树结构

代码

#include <iostream>
#include <vector>
#include <stack>
using namespace std;
struct TreeNode
{int val;TreeNode *left;TreeNode *right;TreeNode() : val(0), left(nullptr), right(nullptr) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(nullptr), right(nullptr) {}
};class Solution
{
public:// 递归函数void traversak(TreeNode *cur, vector<int> &vec){if (cur == nullptr){return;}vec.push_back(cur->val);    // 当前节点traversak(cur->left, vec);  // 左traversak(cur->right, vec); // 右}// 前序遍历vector<int> preorderTraversal(TreeNode *root){vector<int> result;traversak(root, result);return result;}
};
class Solution
{
public:// 前序遍历vector<int> preorderTraversal(TreeNode *root){// 定义栈stack<TreeNode *> st;// 结果集vector<int> result;// 空节点 返回空if (root == NULL){return result;}// 根节点压入栈st.push(root);while (!st.empty()){TreeNode *node = st.top(); // 根节点st.pop();result.push_back(node->val);if (node->right){// 右(空节点不入栈st.push(node->right);}if (node->left){// 左(空节点不入栈st.push(node->left);}}return  result;}
};

return 只是结束当前栈帧的执行,并返回到调用它的函数。它不会影响其他栈帧的执行

43.二叉树的后序遍历

(力扣145题)

给定一个二叉树的根节点 root ,返回 它的 中序 遍历

示例 1:

img

输入:root = [1,null,2,3]
输出:[1,3,2]

示例 2:

输入:root = []
输出:[]

示例 3:

输入:root = [1]
输出:[1]

提示:

  • 树中节点数目在范围 [0, 100]
  • -100 <= Node.val <= 100

进阶: 递归算法很简单,你可以通过迭代算法完成吗?

解题思路

后序遍历的顺序是“左-右-根”,即先递归遍历左子树,然后递归遍历右子树,最后访问根节点。实现后序遍历可以使用递归或**非递归(栈)**的方法。

递归方法

递归方法是最直观的实现方式,利用函数调用栈来实现遍历:

  1. 递归左子树:对当前节点的左子树进行后序遍历。
  2. 递归右子树:对当前节点的右子树进行后序遍历。
  3. 访问根节点:将当前节点的值加入结果向量。
  4. 终止条件:如果当前节点为空,直接返回。

递归方法的优点是代码简洁,但可能会受到递归深度的限制。

非递归方法(栈)

非递归方法使用显式的栈来模拟递归调用:

  1. 初始化栈:将根节点压入栈。
  2. 循环条件:当栈不为空时,执行以下操作:
    • 弹出栈顶节点,访问其值,并将其值加入结果向量。
    • 如果左子节点不为空,将其压入栈。
    • 如果右子节点不为空,将其压入栈。
  3. 反转结果集:由于栈的后进先出特性,最终结果需要反转。
  4. 终止条件:栈为空时,遍历完成。

非递归方法的优点是避免了递归调用的开销,适合处理较深的树结构。

代码

#include <iostream>
#include <vector>
#include <stack>
#include <algorithm>
using namespace std;
struct TreeNode
{int val;TreeNode *left;TreeNode *right;TreeNode() : val(0), left(nullptr), right(nullptr) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(nullptr), right(nullptr) {}
};class Solution
{
public:// 递归函数void traversak(TreeNode *cur, vector<int> &vec){if (cur == nullptr){return;}traversak(cur->left, vec);  // 左traversak(cur->right, vec); // 右vec.push_back(cur->val);    // 当前节点}// 后序遍历vector<int> postorderTraversal(TreeNode *root){vector<int> result;traversak(root, result);return result;}
};class Solution
{
public:// 后序遍历vector<int> postorderTraversal(TreeNode *root){// 定义栈stack<TreeNode *> st;// 结果集vector<int> result;// 空节点 返回空if (root == NULL){return result;}// 根节点压入栈st.push(root);while (!st.empty()){TreeNode *node = st.top(); // 根节点st.pop();result.push_back(node->val);if (node->left){// 左(空节点不入栈st.push(node->left);}if (node->right){// 右(空节点不入栈st.push(node->right);}}// 反转结果集reverse(result.begin(), result.end());return  result;}
};
http://www.cadmedia.cn/news/8313.html

相关文章:

  • 深圳建工建设集团有限公司杭州seo网络推广
  • 安徽专业网站建设设计百度指数搜索
  • 湘潭做网站价格 d磐石网络关键词歌曲免费听
  • 建设局特种作业网站南京seo关键词优化预订
  • 哈尔滨最新疫情防控政策苏州seo关键词优化报价
  • 学生个人网页seo是什么服
  • 湖南响应式网站公司兰州百度推广的公司
  • 建设平滑扣皮带网站2020最近的新闻大事10条
  • 淘宝店铺首页装修优化设计七年级下册数学答案
  • 做网站都有什么功能简述影响关键词优化的因素
  • 档案网站的建设方案深圳网络营销信息推荐
  • 福州市网站建设公司手机创建网站免费注册
  • 评价校园网站建设范例泉州seo排名扣费
  • 郑州网站设计抖音推广怎么做
  • 慕课网站建设开题报告百度助手app下载
  • 携程网站建设评价seo搜索排名优化方法
  • 金钟街网站建设哪家好百度爱采购服务商查询
  • 苏州企业网站建设公司淘宝运营培训课程免费
  • 哈尔滨仿站定制模板建站网络营销项目策划书
  • 伊犁网站建设评价最佳的搜索引擎
  • 深圳建设官方网站起飞页自助建站平台
  • 西安市住房和城乡建设局官网seo分析案例
  • 福州便民网首页推广优化seo
  • 装饰网站建设重要性semantic
  • 网站建建设心的浙江网站建设推广
  • 交易网站开发短视频如何引流与推广
  • 打开2345网址网站优化排名推广
  • 糖果网站建设策划书seo成都培训
  • 一个人免费看的高清电影在线观看网站性能优化的方法有哪些
  • 江苏工程信息网seo查询seo