关于网站建设的文案seo平台有哪些
题目描述
给出一个长为 n n n 的数列,以及 n n n 个操作,操作涉及区间加法,询问区间内小于某个值 x x x 的元素个数。
输入格式
第一行输入一个数字 n n n。
第二行输入 n n n 个数字,第 i i i 个数字为 a i a_i ai,以空格隔开。
接下来输入 n n n 行询问,每行输入四个数字 o p t , l , r , c opt,l,r,c opt,l,r,c,以空格隔开。
若 o p t = 0 opt = 0 opt=0,表示将位于 [ l , r ] [l, r] [l,r] 的之间的数字都加 c c c。
若 o p t = 1 opt = 1 opt=1,表示询问 [ l , r ] [l, r] [l,r] 中,小于 c 2 c^2 c2 的数字的个数。
输出格式
对于每次询问,输出一行一个数字表示答案。
样例
样例输入1:
4
1 2 2 3
0 1 3 1
1 1 3 2
1 1 4 1
1 2 3 2
样例输出1:
3
0
2
数据范围
对于 100 % 100\% 100% 的数据, 1 ≤ n ≤ 50000 1 \le n \le 50000 1≤n≤50000, − 2 31 ≤ o t h e r s , a n s ≤ 2 31 − 1 -2^{31} \le others,ans \le 2^{31} - 1 −231≤others,ans≤231−1。
题解
修改:散块修改时,有可能会打乱排序的顺序。因此需要修改后重新排序。整块还是用一个标记存区间加 a d d add add 的值。
查询:散块直接暴力判断。整块对块内元素进行排序,再用二分求出小于 c 2 − a d d c^2 - add c2−add 的数的个数。
#include<bits/stdc++.h>
using namespace std;
long long n, kuai_cnt, kuai_len;
long long a[50010], add[310], belong[50010];
vector<long long> v[310];
void reset(long long x){//重新排序v[x].clear();for(long long i = (x - 1) * kuai_len + 1; i <= min(x * kuai_len, n); ++ i){v[x].push_back(a[i]);}sort(v[x].begin(), v[x].end());
}
void change(long long l, long long r, long long x){for(long long i = l; i <= min(belong[l] * kuai_len, r); ++ i){a[i] += x;}reset(belong[l]);if(belong[l] != belong[r]){for(long long i = (belong[r] - 1) * kuai_len + 1; i <= r; ++ i){a[i] += x;}reset(belong[r]);}for(long long i = belong[l] + 1; i <= belong[r] - 1; ++ i){add[i] += x;}
}
long long query(long long l, long long r, long long x){long long sum = 0;for(long long i = l; i <= min(r, belong[l] * kuai_len); ++ i){if(a[i] + add[belong[l]] < x){++ sum;}}if(belong[l] != belong[r]){for(long long i = (belong[r] - 1) * kuai_len + 1; i <= r; ++ i){if(a[i] + add[belong[r]] < x){++ sum;}}}for(long long i = belong[l] + 1; i <= belong[r] - 1; ++ i){long long t = x - add[i];sum += lower_bound(v[i].begin(), v[i].end(), t) - v[i].begin();}return sum;
}
int main(){scanf("%lld", &n);for(long long i = 1; i <= n; ++ i){scanf("%lld", &a[i]);}kuai_len = sqrt(n);kuai_cnt = (n + kuai_len - 1) / kuai_len;for(long long i = 1; i <= n; ++ i){belong[i] = (i - 1) / kuai_len + 1;v[belong[i]].push_back(a[i]);}for(long long i = 1; i <= kuai_cnt; ++ i){sort(v[i].begin(), v[i].end());}for(long long i = 1; i <= n; ++ i){long long op, l, r, d;scanf("%lld %lld %lld %lld", &op, &l, &r, &d);if(op == 0){change(l, r, d);}else{printf("%lld\n", query(l, r, d * d));}}return 0;
}