时时彩网站建设teafly行业关键词词库
Python数据结构高级:图的表示与遍历
一、图的基本概念
1.1 图的定义与分类
图(Graph)是由顶点(Vertex)集合和边(Edge)集合组成的数据结构,形式化表示为 G = (V, E)
主要分类:
- 无向图 vs 有向图
# 无向图示例:A-B-C # 有向图示例:A→B→C
- 权重图 vs 非权重图
# 权重图示例:A-(5)-B-(3)-C # 非权重图示例:A-B-C
1.2 典型应用场景
- 社交网络:用户为顶点,关注关系为边
- 交通网络:城市为顶点,路线为带权边
- 知识图谱:实体为顶点,关系为边
- 推荐系统:用户-商品交互关系建模
二、图的表示方法
2.1 邻接矩阵
使用二维数组表示顶点间的连接关系
class AdjMatrixGraph:def __init__(self, vertices):self.size = len(vertices)self.vertices = verticesself.matrix = [[0]*self.size for _ in range(self.size)]self.index_map = {v:i for i,v in enumerate(vertices)}def add_edge(self, u, v, weight=1):i = self.index_map[u]j = self.index_map[v]self.matrix[i][j] = weight# 若是无向图需添加反向# self.matrix[j][i] = weight
时间复杂度分析:
- 查询相邻节点:O(1)
- 遍历所有边:O(V²)
- 空间复杂度:O(V²)
2.2 邻接表
使用字典+链表存储连接关系(更节省空间)
from collections import defaultdictclass Graph:def __init__(self):self.adj_list = defaultdict(list)def add_edge(self, u, v, weight=None):self.adj_list[u].append((v, weight))# 若是无向图需添加反向# self.adj_list[v].append((u, weight))
时间复杂度分析:
- 查询相邻节点:O(1)平均
- 遍历所有边:O(V+E)
- 空间复杂度:O(V+E)
三、图的遍历算法
3.1 深度优先搜索(DFS)
def dfs(graph, start):visited = set()stack = [start]while stack:vertex = stack.pop()if vertex not in visited:print(vertex, end=' ')visited.add(vertex)# 逆序压栈保证顺序一致性for neighbor in reversed(graph.adj_list[vertex]):if neighbor[0] not in visited:stack.append(neighbor[0])
应用场景:
- 拓扑排序
- 检测环路
- 寻找连通分量
3.2 广度优先搜索(BFS)
from collections import dequedef bfs(graph, start):visited = set()queue = deque([start])while queue:vertex = queue.popleft()if vertex not in visited:print(vertex, end=' ')visited.add(vertex)for neighbor in graph.adj_list[vertex]:if neighbor[0] not in visited:queue.append(neighbor[0])
应用场景:
- 最短路径查找(未加权图)
- 社交网络的好友推荐
- 网页爬虫的URL遍历
四、完整代码示例
class Graph:def __init__(self):self.adj_list = defaultdict(list)def add_edge(self, u, v, weight=None):self.adj_list[u].append((v, weight))def dfs(self, start):visited = set()self._dfs_recursive(start, visited)def _dfs_recursive(self, vertex, visited):if vertex not in visited:print(vertex, end=' ')visited.add(vertex)for neighbor in self.adj_list[vertex]:self._dfs_recursive(neighbor[0], visited)def bfs(self, start):visited = set()queue = deque([start])while queue:vertex = queue.popleft()if vertex not in visited:print(vertex, end=' ')visited.add(vertex)for neighbor in self.adj_list[vertex]:if neighbor[0] not in visited:queue.append(neighbor[0])# 使用示例
if __name__ == "__main__":g = Graph()g.add_edge('A', 'B')g.add_edge('A', 'C')g.add_edge('B', 'D')g.add_edge('C', 'E')g.add_edge('D', 'E')print("DFS遍历结果:")g.dfs('A') # 输出:A B D E C print("\nBFS遍历结果:")g.bfs('A') # 输出:A B C D E
五、每日挑战:路径存在性判断
def has_path(graph, start, end):visited = set()stack = [start]while stack:current = stack.pop()if current == end:return Trueif current not in visited:visited.add(current)for neighbor in graph.adj_list[current]:if neighbor[0] not in visited:stack.append(neighbor[0])return False# 测试用例
g = Graph()
g.add_edge('A', 'B')
g.add_edge('B', 'C')
g.add_edge('C', 'D')print(has_path(g, 'A', 'D')) # 输出:True
print(has_path(g, 'D', 'A')) # 输出:False
算法选择建议:
- 最短路径问题 → BFS
- 拓扑排序 → DFS
- 存在性判断 → 两者均可
六、扩展应用
- 加权图的最短路径(Dijkstra算法)
- 最小生成树(Prim/Kruskal算法)
- 社交网络分析(使用NetworkX库)
- 图数据库应用(Neo4j的Python接口)
# Dijkstra算法示例
import heapqdef dijkstra(graph, start):distances = {vertex: float('inf') for vertex in graph}distances[start] = 0heap = [(0, start)]while heap:current_dist, current_vertex = heapq.heappop(heap)if current_dist > distances[current_vertex]:continuefor neighbor, weight in graph[current_vertex]:distance = current_dist + weightif distance < distances[neighbor]:distances[neighbor] = distanceheapq.heappush(heap, (distance, neighbor))return distances
学习建议:
- 使用可视化工具(如Graphviz)辅助理解
- 在LeetCode上练习相关题目(如207.课程表、133.克隆图)
- 阅读NetworkX库源码学习工业级实现
- 尝试实现A*算法等高级图算法
掌握图的表示与遍历是理解复杂算法的基础,后续可继续学习强连通分量、最大流等高级主题。