当前位置: 首页 > news >正文

河池市住房和城乡建设厅网站营销案例最新

河池市住房和城乡建设厅网站,营销案例最新,郑州市政府网站集约化建设平台,基于.NET的电子商务网站开发在非数类大学生数学竞赛中,Stolz定理作为一种强大的工具,经常被用来解决和式数列极限的问题,也被誉为离散版的’洛必达’方法,它提供了一种简洁而有效的方法,使得原本复杂繁琐的极限计算过程变得直观明了。本文&#x…

        

        在非数类大学生数学竞赛中,Stolz定理作为一种强大的工具,经常被用来解决和式数列极限的问题,也被誉为离散版的’洛必达’方法,它提供了一种简洁而有效的方法,使得原本复杂繁琐的极限计算过程变得直观明了。本文,我们将通过几个例题介绍该定理的使用方法。

stolz定理

        设数列\left \{ a_n \right \},\left \{ b_n \right \}满足:\left \{ b_n \right \}严格单调递增

        且\lim_{n\to\infty}\left \{ b_n \right \}=\infty

        若\lim_{n\to\infty}\frac{a_n-a_n-1}{b_n-b_n-1}=L

        则\lim_{n\to\infty}\frac{a_n}{b_n}=L

        定理看起来非常简单易懂,且该定理与洛必达公式形似。洛必达公式描述的是函数的导数的极限与原函数的极限之间的关系,该定理描述的是数列差分后的极限与原数列极限之间的关系。

 例题


1.\lim_{n\to0}\frac{1+\sqrt{2}+\sqrt[3]{3}+...\sqrt[n]{n}}{n}

解:设a_n=1+\sqrt{2}+\sqrt[3]{3}+...\sqrt[n]{n},b_n=n

     a_n=\sum_{k=1}^{n}\sqrt[k]{k}

     a_{n-1}=\sum_{k=1}^{n-1}\sqrt[k]{k}

     a_n-a_{n-1}=\sqrt[n]{n}

     b_n-b_{n-1}=n-(n-1)=1

    设L=\lim_{n\to\infty}\frac{a_n-a_{n-1}}{b_n-b_{n-1}}=\lim_{n\to\infty}\frac{\sqrt[n]{n}}{1}

     则L=\lim_{n\to\infty}e^{\frac{\ln n}{n}}=e^{\lim_{n\to\infty}\frac{\ln n}{n}}

     L=e^{0}=1

那么,原式极限结果为1


2.\lim_{n\to\infty}\frac{1+\sqrt{2}+\sqrt{3}+...+\sqrt{n}}{\sqrt{n+1}+\sqrt{n+2}+...\sqrt{n+n}}

解: 设a_n=1+\sqrt{2}+\sqrt{3}+...+\sqrt{n}=\sum_{k=1}^{n}\sqrt{k}

     a_{n-1}=\sum_{k=1}^{n-1}\sqrt{k}

     b_n=\sqrt{n+1}+\sqrt{n+2}+...\sqrt{n+n}

 (b_n每一项内第一个n与其下标一致)

注意,对于b_n来说,经过观察我们不难发现b_{n-1}不单单意味着原数列的前n-1项,同时我们还应该将b_n每一项内第一个n更改为n-1。即b_{n-1}=\sum_{k=1}^{n-1}\sqrt{n-1+k}

      b_{n-1}=\sqrt{n-1+1}+\sqrt{n-1+2}+...+\sqrt{n-1+n-1}

      则a_n-a_{n-1}=\sqrt{n}

      b_n-b_{n-1}=\sqrt{2n}+\sqrt{2n-1}-\sqrt{n}

     L=\lim_{n\to\infty}\frac{a_{n-1}}{b_{n-1}}=\lim_{n\to\infty}\frac{\sqrt{n}}{\sqrt{2n-1}+\sqrt{2n}-\sqrt{n}}

利用'抓大头'思想不难得到L=\frac{1}{2\sqrt{2}-1}

 那么,原式极限结果=\frac{1}{2\sqrt{2}-1}


3.\lim_{n\to\infty}n\begin{pmatrix} \sum_{k=1}^{n}\frac{1}{n+k}-ln2 \end{pmatrix}

原式=\lim_{n\to\infty}\frac{\begin{pmatrix} \sum_{k=1}^{n}\frac{1}{n+k}-ln2 \end{pmatrix}}{\frac{1}{n}}

a_n=\sum_{k=1}^{n}\frac{1}{n+k},b_n=\frac{1}{n}

L=\lim_{n\to\infty}\frac{a_{n-1}}{b_{n-1}}

L=\lim_{n\to\infty}\frac{\sum_{k=1}^{n}\frac{1}{n+k}-ln2-\sum_{k=1}^{n-1}\frac{1}{n-1+k}+ln2}{\frac{1}{n}-\frac{1}{n-1}}

L=lim_{n\to\infty}\frac{\frac{1}{2n}+\frac{1}{2n-1}-\frac{1}{n}{}}{\frac{-1}{n(n-1)}}

L=\lim_{n\to\infty}\frac{-n(n+1)}{(2n-1)(2n)}

利用'抓大头'思想不难得到L=-\frac{1}{4}

那么原式极限结果为-\frac{1}{4}

总结

        使用stolz定理求解数列极限,特别是和式极限时一定要化简至\frac{a_n}{b_n}的形式,并且在计算

\lim_{n\to\infty}\frac{a_n-a_{n-1}}{b_n-b_{n-1}}时要格外注意数列差分结果的计算,不要只是简单的将n-1带入(特别是和式极限)

        拿不准可以多展开几项,观察数列通项。

        以上便是使用stolz定理求解数列极限时所有需要注意的地方,看完这篇文章,我相信你又将掌握一个求极限的利器。

http://www.cadmedia.cn/news/4009.html

相关文章:

  • 公司装修设计案例武汉企业seo推广
  • 为拟建设的网站申请一个域名今日国际新闻摘抄
  • 外包做一个网站一般费用seo网络公司
  • 云南省建设厅勘察设计处网站无锡百度信息流
  • 做直销建立个人网站好吗百度seo培训
  • web网站是什么深圳百度seo整站
  • 建设网站的收费扬州seo推广
  • 新津县建设局网站有没有免费的seo网站
  • 网站如何快速被百度收录什么是网络营销策划
  • 潍坊网站建设价链接优化方法
  • jsp网站服务建设开题报告百度搜索关键词排名优化
  • .net做网站用mvc免费百度广告怎么投放
  • 后台java语言做网站排名优化培训
  • 建设政府网站的目的意义网站收录平台
  • 403网站打开免费百度运营优化师
  • 北京网站建设百度排名今日疫情最新情况
  • 英语教育网站建设线上it培训机构
  • 佛山格尔做网站的公司宣传推广计划怎么写
  • 专业信息网站建设方案推广普通话的文字内容
  • 工程行业招聘网站整站优化系统
  • 做网站建设需要会哪些重庆网站seo多少钱
  • 深圳住房与建设网站制作公司官网多少钱
  • 网站做业务赚钱百度指数是怎么计算的
  • 城乡与建设厅网站首页友情链接免费发布平台
  • 呼和浩特做网站深圳关键词优化
  • 网站建设那里流量主广告点击自助平台
  • 怎样做自己公司的网站外链发布平台
  • 网站服务器如何做热备价凡科建站收费价目表
  • 免费b站推广网站2021软件开发培训机构排名
  • 嘉定网站设计制作优化排名2022年新闻热点摘抄