当前位置: 首页 > news >正文

企业网盘怎么上传文件seo网络优化专员

企业网盘怎么上传文件,seo网络优化专员,江苏网站设计公司电话,怎么做国外的网站吗GPU训练 要让模型在 GPU 上训练,主要是将模型和数据迁移到 GPU 设备上。 在 PyTorch 里,.to(device) 方法的作用是把张量或者模型转移到指定的计算设备(像 CPU 或者 GPU)上。 对于张量(Tensor)&#xff1…

 GPU训练
要让模型在 GPU 上训练,主要是将模型和数据迁移到 GPU 设备上。

在 PyTorch 里,.to(device) 方法的作用是把张量或者模型转移到指定的计算设备(像 CPU 或者 GPU)上。

对于张量(Tensor):调用 .to(device) 之后,会返回一个在新设备上的新张量。
对于模型(nn.Module):调用 .to(device) 会直接对模型进行修改,让其所有参数和缓冲区都移到新设备上。在进行计算时,所有输入张量和模型必须处于同一个设备。要是它们不在同一设备上,就会引发运行时错误。并非所有 PyTorch 对象都有 .to(device) 方法,只有继承自 torch.nn.Module 的模型以及 torch.Tensor 对象才有此方法。
RuntimeError: Tensor for argument #1 'input' is on CPU, but expected it to be on GPU 这个常见错误就是输入张量和模型处于不同的设备。

import torchif torch.cuda.is_available():print("CUDA可用!")device_count = torch.cuda.device_count()print(f"可用的CUDA设备数量: {device_count}")current_device = torch.cuda.current_device()print(f"当前使用的CUDA设备索引: {current_device}")device_name = torch.cuda.get_device_name(current_device)print(f"当前CUDA设备的名称: {device_name}")cuda_version = torch.version.cudaprint(f"CUDA版本: {cuda_version}")print("cuDNN版本:", torch.backends.cudnn.version())else:print("CUDA不可用。")iris = load_iris()
X = iris.data 
y = iris.target  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)X_train = torch.FloatTensor(X_train).to(device)
y_train = torch.LongTensor(y_train).to(device)
X_test = torch.FloatTensor(X_test).to(device)
y_test = torch.LongTensor(y_test).to(device)class MLP(nn.Module):def __init__(self):super(MLP, self).__init__()self.fc1 = nn.Linear(4, 10)self.relu = nn.ReLU()self.fc2 = nn.Linear(10, 3)def forward(self, x):out = self.fc1(x)out = self.relu(out)out = self.fc2(out)return outmodel = MLP().to(device)criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)num_epochs = 20000
losses = []
start_time = time.time()for epoch in range(num_epochs):outputs = model(X_train)loss = criterion(outputs, y_train)optimizer.zero_grad()loss.backward()optimizer.step()losses.append(loss.item())if (epoch + 1) % 100 == 0:print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')time_all = time.time() - start_time
print(f'Training time: {time_all:.2f} seconds')plt.plot(range(num_epochs), losses)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training Loss over Epochs')
plt.show()

能够优化的只有数据传输时间,针对性解决即可,很容易想到2个思路:
1. 直接不打印训练过程的loss了,但是这样会没办法记录最后的可视化图片,只能肉眼观察loss数值变化。
2. 每隔200个epoch保存一下loss,不需要20000个epoch每次都打印,

下面先尝试第一个思路:

import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import numpy as npiris = load_iris()
X = iris.data 
y = iris.target  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)X_train = torch.FloatTensor(X_train)
y_train = torch.LongTensor(y_train)
X_test = torch.FloatTensor(X_test)
y_test = torch.LongTensor(y_test)class MLP(nn.Module): def __init__(self): super(MLP, self).__init__() self.fc1 = nn.Linear(4, 10)  self.relu = nn.ReLU()self.fc2 = nn.Linear(10, 3)  def forward(self, x):out = self.fc1(x)out = self.relu(out)out = self.fc2(out)return outmodel = MLP()criterion = nn.CrossEntropyLoss()optimizer = optim.SGD(model.parameters(), lr=0.01)num_epochs = 20000 losses = []import time
start_time = time.time() for epoch in range(num_epochs): outputs = model.forward(X_train)  # outputs = model(X_train) loss = criterion(outputs, y_train) optimizer.zero_grad() loss.backward(optimizer.step() if (epoch + 1) % 100 == 0:print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')time_all = time.time() - start_time
print(f'Training time: {time_all:.2f} seconds')

优化后发现确实效果好,近乎和用cpu训练的时长差不多。所以可以理解为数据从gpu到cpu的传输占用了大量时间。

下面尝试下第二个思路:

import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
import time
import matplotlib.pyplot as pltdevice = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")iris = load_iris()
X = iris.data 、
y = iris.target 、X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)X_train = torch.FloatTensor(X_train).to(device)
y_train = torch.LongTensor(y_train).to(device)
X_test = torch.FloatTensor(X_test).to(device)
y_test = torch.LongTensor(y_test).to(device)class MLP(nn.Module):def __init__(self):super(MLP, self).__init__()self.fc1 = nn.Linear(4, 10)  self.relu = nn.ReLU()self.fc2 = nn.Linear(10, 3) def forward(self, x):out = self.fc1(x)out = self.relu(out)out = self.fc2(out)return outmodel = MLP().to(device)criterion = nn.CrossEntropyLoss()、
optimizer = optim.SGD(model.parameters(), lr=0.01)num_epochs = 20000 、losses = []start_time = time.time() 、for epoch in range(num_epochs):outputs = model(X_train)  、loss = criterion(outputs, y_train)optimizer.zero_grad()loss.backward()optimizer.step()if (epoch + 1) % 200 == 0:losses.append(loss.item()) # item()方法返回一个Python数值,loss是一个标量张量print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')if (epoch + 1) % 100 == 0:print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')time_all = time.time() - start_time  、
print(f'Training time: {time_all:.2f} seconds')plt.plot(range(len(losses)), losses)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training Loss over Epochs')
plt.show()

http://www.cadmedia.cn/news/2718.html

相关文章:

  • 西安找公司建网站百度指数搜索指数的数据来源
  • 深圳模具外贸网站建设去哪里推广软件效果好
  • 佛山网络公司推荐承德seo
  • 金蝶软件中国有限公司百度seo关键词报价
  • 重庆网站建设套餐磁力猫最佳搜索引擎入口
  • 网站结算系统怎么做杭州网站建设 seo
  • 广东东莞天气预报15天整站优化外包服务
  • 学校网站建设项目的wbs安徽百度关键词优化
  • 免费html网页模板素材网站域名备案查询官网
  • 中国建筑网站平台有哪些企业为何选择网站推广外包?
  • 北京高端网站公司哪家好bt磁力搜索引擎在线
  • 网站设计制作公司推荐百度竞价排名推广
  • 百度关键词优化多少钱一年关键词首页排名优化平台
  • 代做网站平台青岛网站建设公司电话
  • 济宁做网站的企业合肥网络营销公司
  • 网站建设工作室发展世界十大网站排名
  • 大连城市建设集团网站百度图片搜索网页版
  • 做网做网站建设的网站程序员培训班要多少钱
  • 深圳做百度网站重庆seo服务
  • 百度商桥怎么绑定网站网络项目发布网
  • 中小型企业建设一个网站大概需要多少钱深圳seo博客
  • 网站建设宝安产品推广软件有哪些
  • 网站制作和收费标准网站关键词排名
  • 做网站最省钱泉州网站建设
  • 唐山城乡建设网站河北百度seo关键词
  • 问答论坛网站建设关键词快速排名平台
  • 网站建设推广视频怎么优化网站关键词的方法
  • 响应式网站建设如何简单制作html静态网页
  • c2c商城网站建设在线磁力搜索引擎
  • 做网站的版式会侵权吗免费的建站平台