当前位置: 首页 > news >正文

python网站开发pdf腾讯企业邮箱登录入口

python网站开发pdf,腾讯企业邮箱登录入口,网站如何在360上做推广,怎么运用区块链做网站使用说明: ‌运行要求‌: MATLAB R2020b 或更新版本已安装 Deep Learning Toolbox推荐使用GPU加速(训练时在代码开头添加 gpuDevice(1)) ‌代码特点‌: 使用MATLAB自带的MNIST手写数字数据集包含数据可视化、网络架构…

使用说明:

  1. 运行要求‌:

    • MATLAB R2020b 或更新版本
    • 已安装 Deep Learning Toolbox
    • 推荐使用GPU加速(训练时在代码开头添加 gpuDevice(1)
  2. 代码特点‌:

    • 使用MATLAB自带的MNIST手写数字数据集
    • 包含数据可视化、网络架构、训练曲线和混淆矩阵
    • 最终测试准确率可达约98%
    • 包含单张图片预测演示

 

%% 神经网络OCR识别示例(MATLAB 2020b及以上版本)
% 需要安装 Deep Learning Toolbox%% 步骤1:加载和预处理数据
clc; clear; close all% 加载MATLAB自带的手写数字数据集
digitDatasetPath = fullfile(matlabroot, 'toolbox', 'nnet', 'nndemos', ...'nndatasets', 'DigitDataset');
imds = imageDatastore(digitDatasetPath, ...'IncludeSubfolders', true, 'LabelSource', 'foldernames');% 显示部分样本
figure
numImages = 10000;
perm = randperm(numImages, 20);
for i = 1:20subplot(4,5,i);imshow(imds.Files{perm(i)});
end% 分割数据集(70%训练,30%测试)
[imdsTrain, imdsTest] = splitEachLabel(imds, 0.7, 'randomized');%% 步骤2:构建神经网络
inputSize = [28 28 1]; % 输入图像尺寸layers = [imageInputLayer(inputSize, 'Name', 'input')   % 输入层convolution2dLayer(3, 16, 'Padding', 'same', 'Name', 'conv1') % 卷积层batchNormalizationLayer('Name', 'bn1')reluLayer('Name', 'relu1')maxPooling2dLayer(2, 'Stride', 2, 'Name', 'maxpool1') % 池化层convolution2dLayer(3, 32, 'Padding', 'same', 'Name', 'conv2')batchNormalizationLayer('Name', 'bn2')reluLayer('Name', 'relu2')fullyConnectedLayer(10, 'Name', 'fc')          % 全连接层softmaxLayer('Name', 'softmax')               % 分类层classificationLayer('Name', 'classification')];%% 步骤3:设置训练参数
options = trainingOptions('adam', ...'InitialLearnRate', 0.001, ...'MaxEpochs', 10, ...'Shuffle', 'every-epoch', ...'ValidationData', imdsTest, ...'ValidationFrequency', 30, ...'Verbose', true, ...'Plots', 'training-progress');%% 步骤4:调整图像大小并训练网络
augimdsTrain = augmentedImageDatastore(inputSize(1:2), imdsTrain);
augimdsTest = augmentedImageDatastore(inputSize(1:2), imdsTest);net = trainNetwork(augimdsTrain, layers, options);%% 步骤5:测试网络性能
[YPred, probs] = classify(net, augimdsTest);
accuracy = mean(YPred == imdsTest.Labels);
disp(['测试准确率: ', num2str(accuracy*100), '%'])% 显示混淆矩阵
figure
confusionchart(imdsTest.Labels, YPred)%% 步骤6:单张图片测试示例
% 随机选取测试集中的一个图像
testImage = readimage(imdsTest, randi(numel(imdsTest.Files)));% 预处理并预测
inputImg = imresize(testImage, inputSize(1:2));
[result, scores] = classify(net, inputImg);% 显示结果
figure
imshow(testImage)
title(['预测结果: ' char(result), '  真实标签: ' char(imdsTest.Labels(1))])
%% 神经网络OCR识别示例(MATLAB 2020b及以上版本)
% 需要安装 Deep Learning Toolbox%% 步骤1:加载和预处理数据
clc; clear; close all% 加载MATLAB自带的手写数字数据集
digitDatasetPath = fullfile(matlabroot, 'toolbox', 'nnet', 'nndemos', ...'nndatasets', 'DigitDataset');
imds = imageDatastore(digitDatasetPath, ...'IncludeSubfolders', true, 'LabelSource', 'foldernames');% 显示部分样本
figure
numImages = 10000;
perm = randperm(numImages, 20);
for i = 1:20subplot(4,5,i);imshow(imds.Files{perm(i)});
end% 分割数据集(70%训练,30%测试)
[imdsTrain, imdsTest] = splitEachLabel(imds, 0.7, 'randomized');%% 步骤2:构建神经网络
inputSize = [28 28 1]; % 输入图像尺寸layers = [imageInputLayer(inputSize, 'Name', 'input')   % 输入层convolution2dLayer(3, 16, 'Padding', 'same', 'Name', 'conv1') % 卷积层batchNormalizationLayer('Name', 'bn1')reluLayer('Name', 'relu1')maxPooling2dLayer(2, 'Stride', 2, 'Name', 'maxpool1') % 池化层convolution2dLayer(3, 32, 'Padding', 'same', 'Name', 'conv2')batchNormalizationLayer('Name', 'bn2')reluLayer('Name', 'relu2')fullyConnectedLayer(10, 'Name', 'fc')          % 全连接层softmaxLayer('Name', 'softmax')               % 分类层classificationLayer('Name', 'classification')];%% 步骤3:设置训练参数
options = trainingOptions('adam', ...'InitialLearnRate', 0.001, ...'MaxEpochs', 10, ...'Shuffle', 'every-epoch', ...'ValidationData', imdsTest, ...'ValidationFrequency', 30, ...'Verbose', true, ...'Plots', 'training-progress');%% 步骤4:调整图像大小并训练网络
augimdsTrain = augmentedImageDatastore(inputSize(1:2), imdsTrain);
augimdsTest = augmentedImageDatastore(inputSize(1:2), imdsTest);net = trainNetwork(augimdsTrain, layers, options);%% 步骤5:测试网络性能
[YPred, probs] = classify(net, augimdsTest);
accuracy = mean(YPred == imdsTest.Labels);
disp(['测试准确率: ', num2str(accuracy*100), '%'])% 显示混淆矩阵
figure
confusionchart(imdsTest.Labels, YPred)%% 步骤6:单张图片测试示例
% 随机选取测试集中的一个图像
testImage = readimage(imdsTest, randi(numel(imdsTest.Files)));% 预处理并预测
inputImg = imresize(testImage, inputSize(1:2));
[result, scores] = classify(net, inputImg);% 显示结果
figure
imshow(testImage)
title(['预测结果: ' char(result), '  真实标签: ' char(imdsTest.Labels(1))])

 

 

http://www.cadmedia.cn/news/14186.html

相关文章:

  • 重庆大山建设有限公司网站百度全网营销
  • 鑫牛元网站建设吉林网站推广公司
  • 淄博网站建设铭盛信息seo的概念是什么
  • wordpress地方门户新手怎么做seo优化
  • 网站设计做微信发现界面农夫山泉软文300字
  • 傻瓜式建站平台外贸营销型网站制作公司
  • 珠海网站制作套餐优化搜索曝光次数的方法
  • 免费流量优化网站排名方法
  • 深圳地铁公司网站友链交换网站源码
  • 一键生成论文的网站手机百度下载app
  • 南宁网站建设公司哪个好什么是seo优化推广
  • 佛山企业网站设计制作网络营销成功案例分析
  • 公司要建设网站需要那些程序互联网销售是什么意思
  • 浙江省和住房建设厅网站中国seo第一人
  • 不建议做软件测试seo的定义
  • 人才网站查询档案百度竞价
  • 阿里云搜索引擎入口seo优化的常用手法
  • 凌点视频素材网百度快照怎么优化排名
  • 网站开发建设技术规范书高端婚恋网站排名
  • 合肥网站建设优化百度竞价推广常用到的工具
  • 自己做网站服务器百度用户服务中心
  • 装修设计软件app免费semseo是什么意思
  • 网站开发人员任职资格推广软件平台
  • 平凉市网站建设seo标签优化
  • 做电商网站都需要学什么自建网站流程
  • 网站内容页面怎么做外链公司市场营销策划方案
  • wordpress ico https平台关键词排名优化
  • 企业商城网站建设开发最权威的排行榜网站
  • 新手怎么搭建网站推荐就业的培训机构
  • 门户网站建设为企业带来的好处百度软件