当前位置: 首页 > news >正文

网站显示正在建设是什么意思郑州seo推广

网站显示正在建设是什么意思,郑州seo推广,成都房地产市场分析,那里有制作网站公司(七)消息队列-Kafka 序列化avro(传递) 客从远方来,遗我双鲤鱼。呼儿烹鲤鱼,中有尺素书。 ——佚名《饮马长城窟行》 本文已同步CSDN、掘金平台、知乎等多个平台,图片依然保持最初发布的水印&…

(七)消息队列-Kafka 序列化avro(传递)

客从远方来,遗我双鲤鱼。呼儿烹鲤鱼,中有尺素书。
——佚名《饮马长城窟行》

在这里插入图片描述

本文已同步CSDN、掘金平台、知乎等多个平台,图片依然保持最初发布的水印(如CSDN水印)。(以后属于本人原创均以新建状态在多个平台分享发布)

前言

多年前,由于工作的性质,发现这系列没有写完,想了想,做人做事还是要有始有终。🤣实在是借口太多了,太不像话了…由于时间过得太久了,这篇开始,可能很多技术以最新或最近的几个版本为主了。

问题背景

在Kafka中,生产者与消费者之间传输消息时,通常需要对数据进行序列化和反序列化。常见的序列化方式如JSON或String存在以下问题:

  1. 数据冗余:字段名重复存储,占用带宽;
  2. 兼容性差:新增或删除字段时容易导致上下游解析失败;
  3. 类型安全缺失:动态解析易引发运行时错误。

而Avro作为一种高效的二进制序列化框架,通过Schema定义数据结构,可实现紧凑存储动态兼容性强类型校验,成为Kafka生态中推荐的序列化方案27。


核心原理
  1. Schema驱动
    Avro要求所有数据必须与预定义的Schema文件(.avsc)匹配。Schema以JSON格式描述数据结构,例如:

    {"type": "record","name": "User","namespace": "com.example.avro","fields": [{"name": "id", "type": "int"},{"name": "name", "type": "string"}]
    }
    

    然后使用 avro-maven-plugin 生成 Java 类:

    <plugin><groupId>org.apache.avro</groupId><artifactId>avro-maven-plugin</artifactId><version>1.11.0</version><executions><execution><phase>generate-sources</phase><goals><goal>schema</goal></goals></execution></executions>
    </plugin>
    

    执行 mvn clean compile 后,com.example.avro.User 类会被自动生成。

    生产者与消费者需共享同一Schema,确保序列化与反序列化的一致性。

  2. 二进制编码
    Avro将数据转换为紧凑的二进制格式,相比JSON减少约30%-50%的存储与传输开销。例如,整型字段直接以二进制存储,无需字段名冗余7。

  3. Schema Registry
    为实现Schema动态管理,通常搭配Schema Registry(如Confluent或Apicurio)使用。其核心功能包括:

    • Schema版本控制与兼容性检查;
    • 通过唯一ID关联消息与Schema,避免传输完整Schema带来的性能损耗。

实现步骤

以下以Java代码为例,展示Kafka集成Avro的配置方法:

1. 添加依赖
<dependencies><!-- Spring Kafka 依赖--><dependency><groupId>org.springframework.kafka</groupId><artifactId>spring-kafka</artifactId></dependency><!-- Avro 依赖 --><dependency><groupId>org.apache.avro</groupId><artifactId>avro</artifactId></dependency><!-- Schema Registry 依赖 --><dependency><groupId>io.confluent</groupId><artifactId>kafka-avro-serializer</artifactId><version>7.2.1</version></dependency>
</dependencies>

运行 HTML

2. 配置生产者
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("key.serializer", StringSerializer.class.getName());
props.put("value.serializer", KafkaAvroSerializer.class.getName());
props.put("schema.registry.url", "http://localhost:8081"); // Schema Registry地址Producer<String, GenericRecord> producer = new KafkaProducer<>(props);// 构建Avro消息
GenericRecord user = new GenericData.Record(schema);
user.put("id", 1);
user.put("name", "Alice");producer.send(new ProducerRecord<>("user-topic", user));------ SpringBoot框架 直接用配置application.yml 和生产者服务类--------------
spring:kafka:bootstrap-servers: localhost:9092properties:schema.registry.url: http://localhost:8081producer:key-serializer: org.apache.kafka.common.serialization.StringSerializervalue-serializer: io.confluent.kafka.serializers.KafkaAvroSerializer@Service
public class UserProducer {private final KafkaTemplate<String, User> kafkaTemplate;@Value("${kafka.topic.user}")private String topic;public UserProducer(KafkaTemplate<String, User> kafkaTemplate) {this.kafkaTemplate = kafkaTemplate;}public void sendUser(User user) {kafkaTemplate.send(topic, user.getId().toString(), user);}
}在 Spring Boot 启动后,我们可以使用以下代码发送一个 User 消息:
User user = User.newBuilder().setId(1).setName("Alice").build();
userProducer.sendUser(user);控制台应该能够看到消费者成功接收到 User 数据
3. 配置消费者
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("group.id", "avro-consumer");
props.put("key.deserializer", StringDeserializer.class.getName());
props.put("value.deserializer", KafkaAvroDeserializer.class.getName());
props.put("schema.registry.url", "http://localhost:8081");Consumer<String, GenericRecord> consumer = new KafkaConsumer<>(props);
consumer.subscribe(Collections.singletonList("user-topic"));while (true) {ConsumerRecords<String, GenericRecord> records = consumer.poll(Duration.ofMillis(100));for (ConsumerRecord<String, GenericRecord> record : records) {System.out.println("Received: " + record.value().get("name"));}
}------ SpringBoot框架 直接用配置application.yml 和消费者服务类--------------
在 application.yml 中配置消费者参数:spring:kafka:consumer:key-deserializer: org.apache.kafka.common.serialization.StringDeserializervalue-deserializer: io.confluent.kafka.serializers.KafkaAvroDeserializerproperties:specific.avro.reader: true然后编写 Kafka 消费者代码:@Service
@KafkaListener(topics = "user_topic", groupId = "user_group")
public class UserConsumer {@KafkaHandlerpublic void consume(User user) {System.out.println("Received user: " + user.getName());}
}

常见问题与解决方案
  1. Schema兼容性错误
    • 现象:生产者更新Schema后消费者无法解析旧数据。
    • 解决:在Schema Registry中配置兼容性策略(如BACKWARD),允许新增字段并设置默认值7。
  2. ClassNotFoundException
    • 现象:反序列化时提示Avro生成的类不存在。
    • 解决:通过Maven插件avro-maven-plugin自动生成Java类,并确保生成路径在编译范围内2。
  3. 性能瓶颈
    • 现象:高吞吐场景下序列化延迟较高。
    • 优化:复用DatumWriterDatumReader实例,避免重复初始化开销7。

总结

Avro通过Schema定义与二进制编码,为Kafka提供了高效、类型安全的序列化方案。结合Schema Registry可实现动态兼容性管理,适用于复杂业务场景下的数据演进需求。实践中需注意Schema版本控制与性能调优,具体工具链配置可参考Confluent官方文档27。


引用说明

  • 代码结构参考自SpringBoot RestTemplate配置方案,通过替换默认组件实现功能增强。
  • Schema兼容性问题分析借鉴了MAT工具中内存对象关联性的排查思路。

后续

下期预告,敬请关注:
(八)消息队列-Kafka 生产者

http://www.cadmedia.cn/news/11625.html

相关文章:

  • 网站建设boss都知道建立网站的软件
  • 大连网站排名网络推广公司线上宣传方式有哪些
  • 莆田外贸建站竞价推广账户竞价托管
  • 创建网站论坛上海seo优化培训机构
  • 网站开发应聘问题商业推广
  • 高校网站平台建设百度怎么提交收录
  • 山西成宁做的网站抖音排名优化
  • 建设商城网站公司 百度百科谷歌搜索官网
  • 建设公司网站需要什么资料网站统计器
  • 企业网站的建设电话咨询自己开发网站怎么盈利
  • 广州网站设计找哪里怎样在网上做宣传
  • 商务平台网站推广软文怎么写样板
  • 西安快速排名优化seo网站关键词排名软件
  • 做关于植物的网站东莞seo网站排名优化公司
  • 网络技术培训内容网络seo是什么工作
  • 嘉兴网站制作软件网络营销试卷及答案
  • 网站建设过程中准备的工作站外推广
  • 佛山市研发网站建设哪家好网络营销方案设计毕业设计
  • 集团网站设计公司网站关键词优化多少钱
  • 成都网站建设吧seo网站优化系统
  • 重庆专业的网站建设项目营销推广策划
  • 创建个网站需要多少钱aso优化运营
  • 苏州网页模板建站小红书外链管家
  • 河源定制网站建设推广免费域名注册永久
  • 扬中网站建设门户报价怎样开网站
  • 软件网站免费百度竞价排名多少钱
  • 第一代 第四代 网站建设站内免费推广有哪些
  • 长春网站制作价格东莞seo建站推广费用
  • 厦门国外网站建设公司百度竞价关键词质量度怎么提升
  • 自媒体网站程序怎么做好seo推广