当前位置: 首页 > news >正文

南昌企业建设网站设计百度新闻网站

南昌企业建设网站设计,百度新闻网站,江门关键词优化效果,css网站案例Gradio全解20——Streaming:流式传输的多媒体应用(3)——实时语音识别技术 本篇摘要20. Streaming:流式传输的多媒体应用20.3 实时语音识别技术20.3.1 环境准备和开发步骤1. 环境准备2. ASR应用开发步骤(基于Transform…

Gradio全解20——Streaming:流式传输的多媒体应用(3)——实时语音识别技术

  • 本篇摘要
  • 20. Streaming:流式传输的多媒体应用
    • 20.3 实时语音识别技术
      • 20.3.1 环境准备和开发步骤
        • 1. 环境准备
        • 2. ASR应用开发步骤(基于Transformers)
      • 20.3.2 配置ASR模型
      • 20.3.3 构建全上下文ASR演示系统
      • 20.3.4 构建流式ASR演示系统
    • 参考文献:

本章目录如下:

  1. 《Gradio全解20——Streaming:流式传输的多媒体应用(1)——流式传输音频:魔力8号球》;
  2. 《Gradio全解20——Streaming:流式传输的多媒体应用(2)——构建对话式聊天机器人》;
  3. 《Gradio全解20——Streaming:流式传输的多媒体应用(3)——实时语音识别技术》;
  4. 《Gradio全解20——Streaming:流式传输的多媒体应用(4)——基于Groq的带自动语音检测功能的多模态Gradio应用》;
  5. 《Gradio全解20——Streaming:流式传输的多媒体应用(5)——基于WebRTC的摄像头实时目标检测》;
  6. 《Gradio全解20——Streaming:流式传输的多媒体应用(6)——构建视频流目标检测系统》。

本篇摘要

本章讲述流式传输的应用,包括音频、图像和视频格式的流式传输。

20. Streaming:流式传输的多媒体应用

本章讲述流式传输的应用,包括音频、图像和视频格式的流式传输。音频应用包括流式传输音频、构建音频对话式聊天机器人、实时语音识别技术和自动语音检测功能;图像应用包括基于WebRTC的摄像头实时目标检测;视频应用包括构建视频流目标检测系统。

20.3 实时语音识别技术

自动语音识别技术(Automatic speech recognition:ASR)作为机器学习中将语音信号转换为文本的重要领域,正处于快速发展阶段。当前ASR算法已普遍应用于智能手机设备,并逐步渗透到专业工作流程中,如医护人员的数字助理系统。由于ASR算法直接面向终端用户,所以必须确保其能够实时准确处理各种语音特征(包括不同口音、音高及背景噪声环境)。

通过Gradio平台,开发者可快速构建ASR算法模型的演示系统,便于测试团队验证或通过麦克风等设备进行自主实时测试。本教程将通过两部分演示如何将预训练语音转文本模型部署至Gradio交互界面:第一部分采用全上下文模式,即用户完成整段录音后才执行预测;第二部分将演示改造为流式处理模式,实现语音实时转换功能。

20.3.1 环境准备和开发步骤

开始之前,先准备环境,比如安装gradio、Transformers及ffmpeg等python包,再按照应用开发步骤进行实战。

1. 环境准备

请确保已安装gradio的Python包,同时本教程需要预训练语音识别模型支持,我们还需要以下两个ASR库构建演示系统:Transformers(安装命令:pip install torch transformers torchaudio),我们使用Transformers中Whisper模型实现语音识别;FFmpeg处理麦克风输入文件,因为Transformers会自动安装ffmpeg,所以建议至少安装其中一个库以便跟进教程。FFmpeg是领先的多媒体框架,能够解码、编码、转码、复用、解复用、流式传输、过滤及播放几乎所有人类与机器创建的媒体内容。该框架支持从最冷门的古老格式到最前沿的技术标准——无论这些格式是由标准委员会、开源社区还是商业公司设计,详细信息请参阅:FFmpeg。

2. ASR应用开发步骤(基于Transformers)

实时语音识别(ASR)应用开发步骤全部基于Transformers,具体步骤如下:

  1. 配置ASR模型环境;
  2. 构建全上下文ASR演示系统;
  3. 构建流式ASR演示系统。

20.3.2 配置ASR模型

首先,需要准备一个ASR模型——可以是自行训练的模型,或是下载预训练模型。本教程将使用Whisper的预训练ASR模型作为示例,以下是加载Hugging Face Transformers中Whisper模型的代码:

from transformers import pipelinepl = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")

配置完成!

20.3.3 构建全上下文ASR演示系统

然后,创建全上下文ASR演示,即用户需完整录制音频后,系统才会调用ASR模型进行推理。利用Gradio实现这一功能非常简单——只需基于上述pipeline对象创建处理函数即可。

具体实现将采用Gradio内置的Audio组件:输入组件将接收用户麦克风输入并返回录音文件路径,输出组件将使用标准Textbox组件显示识别结果。代码如下:

import gradio as gr
from transformers import pipeline
import numpy as nptranscriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")def transcribe(audio):sr, y = audio# Convert to mono if stereoif y.ndim > 1:y = y.mean(axis=1)y = y.astype(np.float32)y /= np.max(np.abs(y))return transcriber({"sampling_rate": sr, "raw": y})["text"]  demo = gr.Interface(transcribe,gr.Audio(sources="microphone"),"text",
)
demo.launch()

transcribe函数接受单一参数audio,这是一个用户录制的音频numpy数组。管道对象期望音频为float32格式,因此我们首先将其转换为float32,然后使用transcriber提取转录文本。

此程序在Hugging Face的地址为:gradio/asr,演示截图如下:
在这里插入图片描述

20.3.4 构建流式ASR演示系统

要实现流式处理,需进行以下配置调整:

  1. 在Audio组件中设置streaming=True以支持流式传输;
  2. 在Interface中启用live=True参数以支持实时传输;
  3. 添加状态存储机制state以保存用户音频流。

具体实现代码如下:

import gradio as gr
from transformers import pipeline
import numpy as nptranscriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
def transcribe(stream, new_chunk):sr, y = new_chunk# Convert to mono if stereoif y.ndim > 1:y = y.mean(axis=1)y = y.astype(np.float32)y /= np.max(np.abs(y))if stream is not None:stream = np.concatenate([stream, y])else:stream = yreturn stream, transcriber({"sampling_rate": sr, "raw": stream})["text"]  demo = gr.Interface(transcribe,["state", gr.Audio(sources=["microphone"], streaming=True)],["state", "text"],live=True,
)
demo.launch()

请注意,我们现在有一个状态变量,因为我们需要跟踪所有音频历史。随着接口运行,每次有新的小段音频时,transcribe函数将会被调用,在状态中跟踪迄今为止所有的音频记录并将新音频片段作为new_chunk;new_chunk经过处理后,将返回新的完整音频并存储回当前状态,同时也返回转录文本。整个过程中,我们只需要简单地将音频拼接在一起,并对整个音频调用转录器对象;也可以优化为其它更有效率的处理方式,比如每次接收到新音频片段时,仅重新处理最后5秒的音频。

现在,ASR模型将在用户说话时进行推理!注意在进度条开始后录音,运行截图如下:
在这里插入图片描述

参考文献:

  1. Streaming AI Generated Audio
  2. Run Inference on servers
  3. Spaces ZeroGPU: Dynamic GPU Allocation for Spaces
http://www.cadmedia.cn/news/10083.html

相关文章:

  • 品牌创意型网站建设推广普通话手抄报简单又好看
  • 网站如何推广营销seo外包优化公司
  • 东方建设集团有限公司网站最火的推广平台
  • 南京旭光建设监理网站首页产品营销方案
  • 邢台123网站友情链接怎么做
  • 济南地区做公司网站的公司长春网站提升排名
  • 临淄网站建设价格小说排行榜2020前十名
  • 旅行社做境外购物网站百度小说排行榜总榜
  • 站长之家产品介绍seo手机端排名软件
  • 设计网站建设书南昌大学论文南宁百度快速优化
  • 安卓移动开发电脑优化大师官方免费下载
  • 中国品牌网站建设推广策略包括哪些内容
  • 四川省法治政府建设网站产品推广活动策划方案
  • 营口公司网站建设网站服务器怎么搭建
  • 电子商务网站建设财务分析网络产品运营与推广
  • 高水平高职建设网站优化营商环境评价
  • 设计师在线接单seo搜索引擎优化案例
  • 中国咖啡网站建设方案百度关键字推广费用
  • 智慧旅游景区网站建设点击软件
  • 电子商务网站建设参考文献网站制作步骤流程图
  • 企业怎么做网站建设佛山网站建设模板
  • 河北住房和城乡建设厅网站卡排名第一的玉米品种
  • 订阅号 wordpress四川seo
  • 天津公司注册网上办理流程sem优化软件哪家好
  • 成都智能建站模板腾讯企点app
  • 柯桥教育网站建设网络营销试卷
  • 网站建设费怎么入账网络营销的12种手段
  • 来个手机能看的网站2021郑州有没有厉害的seo顾问
  • 简单的做海报的网站培训机构排名前十
  • 2018年做淘宝客网站需要备案嘛世界十大网站排名